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Motivation

Simulations of many-body systems with atoms in optical
lattices.

We are interested in lattice geometries with asymmetric
double-wells along one axis, and single wells along
perpendicular axes.

This gives us a more general and richer Hamiltonian.

Importantly, the Hamiltonian includes tunneling energies
beyond nearest neighbors.

Interaction between atoms at different sites become quite
important.

By tuning the lattice parameters, the goal is to be able to
select 2 and 3 particle states, such that there is no two-body
interaction energy, but finite three-body interaction energy.
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Motivation...(long term)

Heff = E a†a + U3
6 a†a†a†aaa, (U2 = 0).

L R
1 particle E

L R

3 particles 3E+U3

L R

2 particles 2E
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Optical lattice potential

The mathematical form for the double-well potential along x is

V (x) = −V0 cos2(kLx)− V1 cos2[2kL(x + b)].

kL is the laser wave vector.

b controls the lattice asymmetry or tilt.

kLb = π/4 gives an untilted symmetric lattice.

V1/V0 controls the barrier height between the left(L) and
right(R) wells within a double well.

In addition, the single well potential along y and z is

V⊥(y , z) = −V2

{
cos2(2kLy) + cos2(2kLz)

}
.
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Double-well lattice, with tunneling energies
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Tunneling energies t � J > JL ≈ JR > JLR > JRL.

Interested in t � ∆, where ∆ is the lattice tilt.
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Tunneling Energies, first construct Wannier functions

Local Wannier functions are numerically obtained as eigen
states of the position operatox x̂ .

The local wannier functions obtained are purely real.
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Tunneling energies using Wannier functions

Tunneling energies t, J, JL, JR , JLR and JRL are then obtained
using the constructed local Wannier functions.

For instance, t = 〈wL|Ĥ|wR〉.
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Tight Binding(TB) and Numerical(N) results for band
tunneling energies (up to nearest neighbor unit cell)

Two approximations for TB Hamiltonian:

TB(1), involving only nearest-neighbor hoppings, t & J,

TB(2), involving all relevant hoppings, t, J, JL, JR , JLR & JRL.

TB(1) highly inadequate! Next-nearest-neighbor tunneling a must!!
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Interaction terms ... using Wannier functions

Bose-Hubbard Hamiltonian with two body interactions.

For instance, ULLLL = g
∫
d~rwL(~r)4.

ULLLR ,ULLRR , J & JL can be of same order, hence important!
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Superfluid(SF) to Mott transition...Decoupling
approximation (Mean field)

1 Write down a Bose Hubbard Hamiltonian

including all relevant hoppings, t, J, JL, JR , JLR & JRL,
including all relevant interaction terms, ULLLL,URRRR & ULLRR .

2 Use the decoupling approximation

a†i ,Laj ,R = ψLaj ,R + ψRa
†
i ,L − ψLψR ,

a†i,L, aj,R → creation, annihilation operators,
ψL = 〈aL〉 and ψR = 〈aR〉,
ψL & ψR are the site independent order parameters.

3 Minimize ground state energy Eg (ψL, ψR) obtained using 2nd

order perturbation theory. Then, for Emin
g (ψL, ψR), if

ψL &ψR = 0→ Mott state.
ψL, ψR 6= 0→ Superfluid state.
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Mott lobes

Effective tunneling along x , teff ≈ t + J.

Mott lobes are ‘chopped’ at teff ≈ 4J⊥.

SF state for teff ≥ 4J⊥.
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Summary and Outlook

Studied a general asymmetric double-well lattice.

Discussed method to construct the local Wannier functions.

Showed that an acceptable TB model must include
next-nearest-neighbor hoppings.

Showed that interactions beyond on-site terms are quite
important.

Obtained the phase diagram using decoupling approximation.

Need to carefully choose states for zero two body and finite
three body interactions.

Need to devise suitable lattice transformations to make atoms
populate such states.
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