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Introduction

Simulations of many-body systems with atoms in optical
lattices.

The goal is to create effective Hamiltonians with large
three-body interactions.

We use an optical lattice with two local minima per unit cell.

This gives us a multi-band Bose-Hubbard (BH) Hamiltonian.

We show that the low energy states of this Hamiltonian is
equivalent to a single-band BH Hamiltonian with large
effective three-body interaction energy, i.e.,

Heff = −J
∑
〈i ,j〉

b†i bj +
1

6
Γ3

∑
i

b†i b
†
i b

†
i bibibi

where b†i creates a particle in unit cell i .
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Optical lattice potential

The mathematical form for the optical lattice potential is

V (x) = −V0 cos2(kLx)− V1 cos2[2kL(x + x0)]

− V2

{
cos2(2kLy) + cos2(2kLz)

}
.

kL is the laser wave vector.

x0 controls the lattice asymmetry.

kLx0 = π/4 gives a symmetric lattice.

The potential has three depths V0, V1 and V2.

V1/V0 controls the barrier height between the left and right
wells within a double well.

Typically, we use a symmetric lattice, vary the depth V0 while
keeping the ratio V1/V0 fixed.
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Optical lattice potential...
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Figure : (a) Contour plot of the optical lattice potential in the xy plane.
(b) Schematic of a symmetric double-well potential along the x axis,
along with the localized Wannier functions w1(x) and w2(x) for the
lowest two Bloch bands along the x direction.
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Two-band BH Hamiltonian

We first set up a BH Hamiltonian for Wannier functions
belonging to the two lowest bands. Other bands are
energetically well separated.

Hopping occurs only between nearest-neighbor unit cells.

J1 is the hopping along the x axis in band one,
J2 is the hopping along the x axis in band two,
J⊥ is the hopping along the perpendicular y and z axes.

Within a unit cell we have single- and two-atom terms

δ is the band-gap between the two lowest bands,
Uα is the two-body interaction strength for band α = 1, 2,
U12 is the pair-wise interaction strengths between the bands.

Crucially, we have a strong pair hopping term
1

2
U12

(
a†i,1a

†
i,1ai,2ai,2 + a†i,2a

†
i,2ai,1ai,1

)
where a†i,α creates a particle in the Wannier function of band
α in unit cell i.
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BH Hamiltonian parameters

We have determined numerically the seven parameters in our
BH model as a function of the lattice depths V0, V1 and V2.

The figures show typical data vs V0 for a symmetric
double-well in units of the recoil energy ER

Panel (a): log-linear scale, Panel (b): linear-linear scale.
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The interaction energies are of similar strength and of the
order of the band gap δ.

The interaction energies are much larger than the tunneling
energies.
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Effective Hamiltonian

Constructing the effective Hamiltonian is a three-step process

1 Inspired by the smallness of the tunneling energies, diagonalize
the on-site Hamiltonian in unit cell i to obtain many-particle
(MP) energy levels.

2 Using these MP levels, construct an effective on-site
interaction Hamiltonian in each unit cell.

3 Finally, calculate the effective tunneling Hamiltonian that
couples the MP states of adjacent unit cells.
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Many-particle energy levels

The MP levels are obtained in terms of the Fock state basis

|ν,N〉 =
N∑

n1=0

C(ν)
n1 (N)|n1,N − n1〉, where ν = {1, . . . ,N + 1}.
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Figure : Plot of MP levels E (ν)
N for N = 3 atoms per unit cell.

The energies of the ground vibrational states E(1)
N are well

separated from the excited state energy levels.
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Effective interaction Hamiltonian
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Atoms only populate the ground vibrational ν = 1 state.

The energies E(1)
N are reproduced by an effective on-site

interaction Hamiltonian

H int
eff =

∑
i

3∑
m=1

1

m!
Γmb

†m
i bmi .

b†i creates a particle in unit cell i in the state |ν = 1,N〉.
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Effective tunneling Hamiltonian

Predominant terms are the usual single-particle hopping terms.

Followed by the density-induced two- and three-body terms
which have the forms J2bb

†
i (b†j bj)bj and J3bb

†
i (b†i bib

†
j bj)bj ,

respectively. They, however, are small.

Thus, tunneling surprisingly has the same structure as that for
a particle hopping in a single-band BH model.

Tunneling mainly occurs in the ground band. Excited band
tunneling which is proportional to J2 can be ignored.

Tunneling mixes vibrational states. To a good approximation,
we only include tunneling between the ground ν = 1 states.

The effective tunneling Hamiltonian is

Hhop
eff =

∑
i

{
−J1b

†
i bi+1x − J⊥

(
b†i bi+1y + b†i bi+1z

)
+ h.c.

}
.
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Validity of the effective Hamiltonian

The effective Hamiltonian is given by

Heff =
∑
i

{
3∑

m=1

Γm

m!
b†mi bmi −J1b

†
i bi+1x−J⊥

(
b†i bi+1y +b†i bi+1z

)
+h.c.

}
.

Perform Mean-field calculation for SF-Mott phase diagram.

Panel (a): Full Hamiltonian Panel (b): Heff
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Cutting off of Mott lobes in Panel (a) at J2 + 2J⊥ = 0.

Of primary interest is SF region S1 where there is excellent
agreement between full and effective Hamiltonians.
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Conclusion

The low energy states of a system of trapped atoms in a
double-well optical lattice can emulate a Hubbard model with
strong three-body interactions.

The full Hamiltonian has a strong pair-tunneling term. The
interplay between this term and the band gap largely
determines the behavior of the system.

The strength of the effective three-body interaction can be
easily tuned by changing the lattice parameters.

Surprisingly, tunneling in the effective Hamiltonian has, to
good approximation, the same structure as that for a particle
hopping in a single-band BH model.

The effective Hamiltonian model is an excellent approximation
over a wide range of lattice parameters, both in the superfluid
and Mott insulator phases.
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