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Motivation

 Simulations of many-body systems with atoms
In optical lattices.

e We are interested in lattice geometries with
asymmetric double wells along one axis.

* This gives more general and richer Hamiltonian.

e Importantly, Hamiltonian includes tunneling
energies beyond nearest neighbors.

* Also, Iinteraction between
atoms at adjacent wells \ /
become important. C

e By tuning lattice
parameters, the goal

IS to be able to select
2 & 3 particle states,

such that there is no X e/ 2F
two-body interaction W

energy, but finite
three-body interaction
energy.
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Double-well lattice

* Tunneling energies, t> ] > =Jg > )ir > x|
* Very small lattice tilt, t > A.
 Tunneling beyond nearest neighbor important.
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Wannier Functions

» Wannier functions w(x)are obtained numerically.
* They are eigenfunctions of the position operator
In basis of Bloch functions [1],

Xka,k’a’ — /wz,a(ﬁ)xwk’,a’(@ dx.

e Band index 1 < a,a’ <2, i.e., first two bands.
e For wi(x) & wa(x), we set a = o'
e For wr(x) & wr(x),we mix first two bands.
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Lattice depth VyEg

 Two approximations for TB Hamiltonian:

« TB(1), involving only
nearest neighbor
tunneling, t & J.

e TB(2), involving all
relevant hoppings.

 TB(1) inadequate! |
Next-nearest neighbor o =0 "5 ° 20
tunneling a must.
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Interaction Terms
e Bose-Hubbard Hamiltonian with two body

o r T interactions.
Uit i« For instance,
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N Lattice depth VyEp ¥ J & Jr can be of
same order. Thus, Interactions between atoms
at adjacent L & R wells are important.

SF to Mott Transition

 Bose-Hubbard Hamiltonian including all relevant
tunneling and interaction terms.

e Use Decoupling approximation

ol Lajr = Yrajp +Yral ;| — rvr,

. a,;.ij, a; r — creation, annihilation operators,

1, = (ar,), Yr = (agr), are order parameters.
 SF state is signified by non-zero order parameter.

. ] » Effective hop
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Outlook

e Determine 2 & 3 particle states for which there
IS no two body interaction but finite 3 body
interaction.

* Find out suitable lattice transformations that
would populate such selected states.
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