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Motivation
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• Tunneling energies, t ≫ J > JL≃ JR > JLR > JRL.
• Very small lattice tilt, t ≫ Δ.
• Tunneling beyond nearest neighbor important.

• Simulations of many-body systems with atoms
   in optical lattices.
• We are interested in lattice geometries with 
   asymmetric double wells along one axis.
• This gives more general and richer Hamiltonian.
• Importantly, Hamiltonian includes tunneling 
   energies beyond nearest neighbors.
• Also, interaction between
   atoms at adjacent wells
   become important.
   By tuning lattice
   parameters, the goal
   is to be able to select
   2 & 3 particle states, 
   such that there is no 
   two-body interaction
   energy, but finite 
   three-body interaction
   energy. 
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Wannier Functions
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• Wannier functions         are obtained numerically.
• They are eigenfunctions of the position operator
   in basis of Bloch functions [1], 

• Band index                    , i.e., first two bands.
• For                          we set
• For                          we mix first two bands.

• Tunneling energies
   numerically obtained 
   from the Wannier fns.
•                           etc.
• Plots are for slightly
   tilted lattice.

• Two approximations for TB Hamiltonian:
• TB(1), involving only
   nearest neighbor
   tunneling,        .
• TB(2), involving all
   relevant hoppings.
• TB(1) inadequate!
   Next-nearest neighbor
   tunneling a must.  

Interaction Terms
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• Bose-Hubbard Hamiltonian with two body 
                                                     interactions.
                                                  • For instance, 

•           
              can be of   

same order. Thus, interactions between atoms
at adjacent L & R wells are important.

SF to Mott Transition
• Bose-Hubbard Hamiltonian including all relevant
   tunneling and interaction terms.
• Use Decoupling approximation

•                      creation, annihilation operators,

•                                      are order parameters.
• SF state is signified by non-zero order parameter. 
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• Effective hop
   along x,

• SF state for

• Chopped Mott
   lobes. 

Outlook
• Determine 2 & 3 particle states for which there
   is no two body interaction but finite 3 body 
   interaction.
• Find out suitable lattice transformations that
   would populate such selected states.
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