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Introduction

 We study ultracold atoms in a double-well optical lattice, with a
 view to creating an effective Hamiltonian that has large three-
 body interaction energy. The Bose-
 Hubbard (BH) Hamiltonian for such a 
 system spans the lowest two bands 
 along x-axis, and the ground band 
 along the perpendicular axes. We obtain
 the many-particle (MP) states,
                             by diagonalizing
 the BH Hamiltonian in the particle
 number basis. These MP energy levels
 are shown in the schematic alongside.
 Using the          state in each MP
 sector, we create an effective 
 interaction Hamiltonian,

 such that the effective three-body
 interaction energy is comparable to
 or larger than the two body term, i.e.,              The ratio 
 can be tuned by changing the lattice parameters. 
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Summary 

We have created an effective Hamiltonian picture to describe a
system of ultracold atoms in a double-well potential. This effective 
Hamiltonian has a large three-body interaction energy, which can be tuned by changing the lattice parameters. In addition, the 
effective Hamiltonian has nearest-neighbor tunneling energy terms similar in structure to single-band BH model. A comparison 
between the numerically obtained phase diagrams show remarkable agreement between the full and effective Hamiltonians.

Many particle energy (MPE) levels 

The interaction part of the Hamiltonian     can be diagonalized in
a particle number basis          where     is the number of atoms in 
the ground band, while     is the total number of atoms in an unit 
cell. This gives the MPE eigen-states                              with 
energies       Figure (left) shows the two-particle energies for
various double-well barrier heights. Figure (right) is a similar plot
for the three-particle energies.
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Effective three-body interaction

The ground-state MP 
energies from section 3
can be mapped to an 
effective Hamiltonian,

where,      represents
the    -body interaction.    
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The effective interactions can be expressed in terms of MPEs,
                    and                          . For large lattice depths, the 
atoms primarily occupy the ground MP states, and we can 
show that,            and                          . Thus, the ratio    
increases with lattice depth! Above Figure shows this ratio as a 
function of lattice depth for various double-well barrier heights. 

The figures show the numerically obtained mean-field phase 
diagrams for the full and effective Hamiltonians. For               , 
the Mott lobes for              and    obtained from both     and          
are nearly identical. The           lobe, however, is larger for       . 
We have to include      to correctly model this lobe. 

A mean-field calculation using         has a single order parameter
and does not describe SF phase S2 for                .

We can show that tunneling of atoms between the MPE states is
also largely confined to ground MP states. Interestingly, these 
tunneling energies between nearest neighbors have the same 
structure as that for a particle hopping in a single-band Bose-
Hubbard model. Thus, the total effective Hamiltonian is,
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The starting point is the multi-band Hamiltonian, which
somewhat simplifies in the band basis, and along x axis is, 

where,    is the band gap between the two lowest bands. All the 
two-body interaction terms and tunneling energies are obtained 
numerically from an exact band structure calculation. They are
plotted in the above Figure (right). The inset of the Figure shows 
the numerically obtained Wannier functions for the lowest two 
energy bands.   

The Hamiltonian has a strong pair-tunneling term. The interplay 
between this term and the band gap plays an important role in
determining the behavior of the system.
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The lattice has symmetric double-wells along the x axis, with 
lattice constant                , and single wells along the y & z axes. 
Symmetric double-wells are formed at                 . A contour plot 
of the potential in the       plane is shown in above Figure (left).

Double-well optical lattice and multi-band Hamiltonian


